Choose your screen resolution: Auto adjust 800x600 1024x768


Categorii
Scris de administrator   
Joi, 08 Iunie 2017 16:08

CATEGORII

Prof. Badea Brigitte,

Colegiul Tehnic Ion Mincu, Timişoara

Rezumat

Structurile algebrice constituie o ramură fascinantă a algebrei, cu aplicaţii extrem de interesante. Elevilor din clasele a XII-a le sunt pezentate câteva structuri algebrice de bază prin care ei pot întrezări frumuseţea acestei părţi a matematicii. Pentru profesorii interesaţi de extinderea în acest domeniu a cunoştinţelor elevilor pe care îi îndrumă voi prezenta în articol noţiunea de categorie, construită cu ajutorul morfismelor studiate în liceu. Această structură algebrică va fi exemplificată prin două categorii tipice, categoria grupurilor abeliene Ab şi categoria R-modulelor Mod( R).

I. Noţiunea de categorie

Se numeşte categorie o noţiune matematică C dată prin:

- o clasă Ob C ale cărei elemente se numesc obiecte;

- pentru fiecare cuplu de obiecte (A,B), o mulţime notată HomC(A,B) numită mulţimea morfismelor de la A la B;

- pentru fiecare tre iobiecte A, B, C o aplicaţie:

mABC: HomC(A,B) HomC(B,C) ®HomC(A,C), aplicaţii care definesc compunerea morfismelor; vom nota: mABC((f,g)) = gf.

Aceste date sunt supuse următoarelor condiţii:

(Cat.1) Dacă (A,B) şi (C,D) sun tdouă perechi distincte de obiecte din C, atunci

HomC(A,B) ∩ HomC(C,D) = Æ.

(Cat.2) Compunerea morfismelor este asociativă, adică:

dacă f HomC(A,B), g HomC(B,C), h HomC(C,D) atunci h(gf) = (hg)f .

(Cat.3) Pentru fiecare obiect A există un morfism 1A HomC(A, A) astfelîncât f HomC(A, ×) şi g HomC(× ,A) să avem: f1A = f şi 1A g = g .

Observaţie: Pentru fiecare obiect A, morfismul1A numit morfism unitate sau morfism identic, este unic.

Fie D o categorie. O categorie Cse numeşte subcategorie a lui D dacă sunt îndeplinite condiţiile:

1) Ob C ÍObD ;

A, B Ob C, HomC(A,B) HomD(A,B) ;

2) Compunerea înCeste indusă de compunerea din D;

3) A Ob C, 1A HomC (A,A).

Prin duala unei categorii vom înţelege categoria C° dată prin:

a) ObC° = ObC ;

b) HomC° (A,B) = HomC(B,A);

c) pentru A, B, C Ob C°, f HomC° (A,B), g HomC° (B,C), m ((f,g)) = mCBA((g,f)).

Principiul dualităţii: Orice noţiune sau enunţ relativ la obiectele şi morfismele unei categoriiCadmite, prin transcriere în categoriaC°, o noţiune sau un enunţ dual.

Observaţie: Practic, dualizarea se obţine prin inversarea săgeţilor ce reprezintă morfismeleluiC.

II. Exemple

1) Categoria grupurilor abeliene Ab

Această categorie este unul din exemplele tipice de categorii, în mod evident condiţiile fiind îndeplinite pentru grupurile abeliene dotate cu morfismele obişnuite şi cu compunerea morfismelor. Exemplul este accesibil inclusive elevilor de liceu în cazul extinderii cunoştinţelor referitoare la structurile algebrice.

2) Categoria R-modulelor Mod(R)

Fie R un inel comutativ arbitrar, cu elemental unitate 1 ≠ 0.

Printr-un modul peste R sauR-modul înţelegem un grup aditiv abelianX împreună cu o aplicaţie

μ: R X → X care satisface următoarele patru axiome:

(M1) μ ( α+β, x) = μ (α, x) + μ ( β, x), α, β R, x X

(M2)μ( α, x+y) = μ(α, x) + μ (α, y), α R , x, y X

(M3)μ [α,μ ( β, x)]= μ (α β, x), α, β R , x X

(M4) μ (1, x) = x , x X .

Aplicaţia μ este numită înmulţirea cu scalar ia modulului X. Această operaţie externă este notată, de regulă, multiplicativ:μ (α, x) = αx.

Cu această notaţie axiomele (M1) – (M4) se scriu:

(M ) (α+β)x = αx + βx , α, β R, x X

(M ) α(x+y) = αx + αy , α R , x, y X

(M ) α(β x) = (α β)x α, β R , x X

(M ) 1x = x, x X .

Fie X şi Y două R-module. O aplicaţie f: X → Y se numeşte morfism de R-module dacă îndeplineşte condiţiile:

(1) f(x+y) = f(x) + f(y), x, y X

(2) f(αx) = αf(x) , α R, x X.

Cu alte cuvinte f este morfism de R-module dacăşi numai dacă este morfism de grupuri şi păstrează înmulţirea cu scalari.

R-modulele dotate cu morfismele de R-module şi cu compunerea uzuală a morfismelor constituie de asemenea un exemplu tipic de categorie.

Bibliografie:

[1] Dragomir A., Dragomir P. – “Structuri algebrice”, Edit. Facla,Timişoara, 1981;

[2] Mitchell B. – Theory of Categories”, Academic Press, New York, 1965;

[3] SzeTsen Hu Introduction to Homological Algebra”, Holdan-Day Inc., 1968.

 

Adaugă comentariu


Codul de securitate
Actualizează

Revista cu ISSN

Codul de etica in invatamantul preuniver…

Codul de etică în învăţământul peuniversitar   Sistemul de învăţământ preuniversitar va dispune de un Cod de etică care va fi finalizat în următoarele luni, principiile generale care vor sta la baza...

Read more

Colindatul copiilor

COLINDATUL COPIILOR Prof. Ciuca Cristina Şcoala cu clasele I – VIII, Bâsca-Chiojdului, Com. Chiojdu, Jud. Buzãu     Obiceiurile calendaristice sunt grupate în patru cicluri care corespund celor...

Read more

Jocul didactic integrat terapiei educati…

JOCUL DIDACTIC INTEGRAT TERAPIEI EDUCAȚIONALE COMPLEXE ȘI INTEGRATE Prof. Educator Mureșan- Chira Gabriel Școala Gimnazială Specială Centru de Resurse și Documentare privind Educația...

Read more

Familia primul educator Rolul familiei i…

FAMILIA - PRIMUL EDUCATOR ROLUL FAMILIEI ÎN ACTIVITATEA DE ÎNVĂŢARE   Prof. înv. primar Bukszar Daniela Școala Gimnazială Lunca Bradului, Jud. Mureș   Rezumat: Familia este matrice de viaţă fundamentală pentru existenţa şi formarea personalităţii elevului, ca...

Read more

Invatarea in ora de filosofie

ÎNVĂȚAREA ÎN ORA DE FILOSOFIE Prof. Ioana-Maria Judele Colegiul de Știinte ale Naturii « Emil Racoviță » Brașov Articolul analizează învăţarea şcolară din...

Read more

Focul lui Sumetru

FOCUL LUI SUMETRU Profesor Şerban Andreea Focul lui Sumetru (Sâmedru) reprezintă un obicei aparent simplu, ce incorporează însă o multitudine de interpretări. Acesta are loc...

Read more

Contributia mijloacelor de invatamant la…

CONTRIBUŢIA MIJLOACELOR DE ÎNVĂŢĂMÂNT LA FORMAREA REPREZENTĂRILOR ŞI A NOŢIUNILOR   Prof. Bobariu Liliana Școala Gimnazială Vidra   Modernizarea învăţământului, în conformitate cu cerinţele reformei, presupune găsirea unor noi tehnologii didactice care să contribuie...

Read more

Metodologia de organizare a evaluarii el…

Metodologia de organizare a evaluarii elevilor - clasa a II-a   Vezi metodologia de organizare a evaluarii competentelor fundamentale la finalul clasei a II-a, publicata in Monitorul Oficial 44 din 21 ianuarie...

Read more