Choose your screen resolution: Auto adjust 800x600 1024x768


Frumusetea matematicii
Scris de mihaiela lazar   
Sâmbătă, 08 Februarie 2020 00:00

FRUMUSEŢEA MATEMATICII

Prof. Opriş Brişcan Maria,

Liceul Tehnologic ,,C-tin Brâncuşi” Oradea

Unii oameni consideră că în matematică toate conceptele au fost create la întrebări fără răspuns, iar pentru alţii matematica reprezintă un adevăr care există indiferent dacă-l descoperă sau nu cineva. Frumuseţea matematicii depinde de ordine,simetrie,determinare clară. Când vorbim de simetrie ne putem gândi la doua elemente de tip plus-minus,infinit şi minus infinit. Dar ar fi prea monoton să existe numai simetrie,de aceea este nevoie şi de asimetrie. Chiar în artă-în culori,în muzică,în natură alternează simetria cu asimetria. Matematica este ştiinţa care nu-şi retractează afirmaţiile,ea nu are loc de subiectivism şi ne va da întotdeauna răspunsuri corecte.Deşi are o grămadă de teoreme,axiome,ele se pot deduce din câteva proprietăţi fundamentale.Ea poate descrie şi modela orice Univers chiar dacă este ireal. Când faci matematică, mintea se deschide şi imposibilul devine posibil. Putem să ne întrebăm cum ar fi viaţa noastră fără matematică?Imposibilă. ,,Esenţa matematicii nu este să facă lucrurile simple complicate,ci să facă lucrurile complicate simple” spunea matematicianul american Stan Gudder.

Cuvinte cheie: matematica, univers, simetrie, numere, ştiintă

Matematica, pe care marele matematician Carl Friederich Gauss o nume a,,regina ştiinţelor” ne guvernează toate universurile posibile.

Unii oameni consideră că în matematică toate conceptele au fost create la întrebări fără răspuns,iar pentru alţii matematica reprezintă un adevăr care există indiferent dacă-l descoperă sau nu cineva. De multe ori aceste dezbateri divizează lumea matematicii.

Matematica nu a fost inventată.Forme matematice au existat înainte să apară viaţa pe planeta noastră.

Pe vremea când Soarele şi Pământul erau doar o pulbere de stele şi gaze,galaxiile,planetele,stelele aveau forme şi mişcări bazate pe principii geometrice simple. Putem spune că matematica a început odată cu Universul.

Când omul a fost capabil să folosească şi să înţeleagă noţiuni abstracte, când au apărut primele sisteme de scris,a apărut şi nevoia de număr, apoi operaţiile matematice: adunarea, scăderea, înmulţirea, iar mai târziu împărţirea. Numerele sunt peste tot în jurul nostru şi ne guvernează lumea în care trăim zi de zi. Ele sunt exprimate prin semne convenţionale şi în cele din urmă au fost tot mai indispensabile existenţei umane.

Ca profesor de matematică nu pretind că tuturor le place această minunată ştiinţă. Profesorul are datoria să le arate copiilor frumuseţea matematicii în fiecare domeniu studiat: algebra, analiza, geometria, fiecare importante în felul lor, cu aplicaţii vaste în tehnică, medicină, chimie, fizică, bologie etc.

Când încercăm să refacem istoria matematicii este important să ne aducem aminte de marele matematician Thales care a trăit în urmă cu 2600 de ani. Deşi Thales a ajutat la inventarea limbajului matematic, oamenii au folosit matematica cu mult timp înaintea lui:au fost descoperite cărămizi în fluviul Tigru,vechi de patru milenii pe care preoţii babilonieni au scris numere.Partea matematicii în care apare sistemul zecimal este o invenţie umană,fiind un adevăr care a existat înainte să fie descoperit de om.De exemplu faimoasa teorema a lui Pitagora:,,suma pătratelor catetelor unui triunghi dreptunghic este egală cu pătratul ipotenuzei” deşi este atribuită acestuia,totuşi ea a mai fost descoperită de câteva ori de alte civilizaţii de-a lungul timpului.Dacă societatea noastră ar dispărea ,desigur că teorema lui Pitagora ar fi iaraşi descoperită.

Şcoala pitagoreică din Grecia Antică credea că ,,totul este număr”. În Evul Mediu matematica armonizează cu muzica,arhitectura.Picturile din perioada renaşterii ne intoduc într-un univers al unui echilibru şi al unei ordini matematice desăvârsite. În muzică ne amintim şi ne încântăm cu proporţiile compoziţiilor lui Bach: în lucrarea ,,Arta fugii” el a fost influenţat de simbolismul numerelor lui Pitagora.

Întrebările puse de mulţi elevi sunt referitoare la utilizarea învăţării matematicii. Ce se poate răspunde la aceste întrebări? Îmi aduc aminte mereu că fiecare generaţie de elevi mi-au pus întrebarea:la ce-mi foloseşte matematica? De fiecare dată le explicam frumuseţea acestei materii,aplicaţiile multiple pe care le are în diverse domenii,dar şi rolul formativ al gândirii, ea fiind o sursă,hrană pentru dezvoltarea gândirii ,minţii.

Din păcate acest rol nu este bine înţeles şi nici gândit nici măcar de cei care au legătura cu învăţământul,reducând tot mai mult numărul orelor de matematică în şcoală.

În ciuda faptului că matematica pare adesea o ştiintă grea,ea poate fi frumoasă atunci când este înţeleasă, oferă bucurii când pricepem o parte din mecanismele care pun lumea în mişcare, o parte din legile care guvernează existenţa noastră.

Frumuseţea matematicii depinde de ordine,simetrie,determinare clară.Platon le răspundea acelora care întrebau ,,la ce este de folos matematica?’’ prin gura personajului Socrate: ,,Aşadar dacă geometria ne sileşte să considerăm ceea ce există, ea ne este de folos;d acă însă ne obligă să considerăm ceea ce este în devenire ,atunci ea nu are nici un folos.”

Matematica foloseşte un limbaj anume,astfel nu pot să nu amintesc noţiuni cum ar fi grup, inel, corp care au un înţeles diferit de ceea ce suntem obişnuiţi în viaţa de zi cu zi.

Dacă tot am amintit de simetrie în matematică,ea a apărut încă pe vremea babilonienilor cu o problemă care astăzi este relativ uşoară: rezolvarea ecuaţiei de gradul doi. Cum matematica s-a dezvoltat şi oamenii au încercat tot cu ajutorul radicalilor rezolvarea ecuaţiilor de grad superior-exemplu ecuaţiile de grad cinci - a apărut în secolul al XIX-lea o întreagă ramură care descrie simetria-teoria grupurilor,care stau la baza înţelegerii naturii şi structurii cea mai profundă a Universului nostru care este simetrică.

Când vorbim de simetrie ne putem gândi la două elemente de tip plus-minus, infinit şi minus infinit. Dar ar fi prea monoton să existe numai simetrie,de aceea este nevoie şi de asimetrie. Chiar în artă-în culori,în muzică,în natură alternează simetria cu asimetria.

Matematica este ştiinţa care nu-şi retractează afirmaţiile, ea nu are loc de subiectivism şi ne va da întotdeauna răspunsuri corecte. Deşi are o grămadă de teoreme, axiome,ele se pot deduce din câteva proprietăţi fundamentale.Ea poate descrie şi modela orice Univers chiar dacă este ireal.

Poţi demonstra lucruri cu o certitudine de 100% cum au facut-o vechii greci dovedind că există o infinitate de numere prime-numere care se divid cu 1 şi cu ele însăşi - şi este valabil şi astăzi. Când faci matematică, mintea se deschide şi imposibilul devine posibil. Ea se poate face cu multă dăruire,implicare,răbdare pentru a vedea rezultatele muncii tale iar în final când vezi că totul se transformă în bine poţi spune că este un câştig real atât al tău ca profesor cât şi al elevilor.

Putem să ne întrebăm cum ar fi viaţa noastră fără matematică? Imposibilă. Totul începând cu casele în care locuim,tehnologia pe care o folosim,noţiunea timpului s-ar pierde fără matematică.

,,Esenţa matematicii nu este să facă lucrurile simple complicate, ci să facă lucrurile complicate simple” spunea matematicianul american Stan Gudder.

Bibliografie:

Ivan Moscovich , Marea carte a jocurilor minţii, Ed. Litera Internațional, București, 2010


Articole asemanatoare relatate:
Articole asemanatoare mai vechi:

 

Revista cu ISSN

Rolul si semnificatia compunerilor scola…

ROLUL ŞI SEMNIFICAŢIA COMPUNERILOR ŞCOLARE ÎN PROGRAMA ŞCOLARĂ Prof. Urjan Mihaela Şcoală Gimnazială Siriu, loc. Siriu Importanta compunerilor în şcoală Pedagogia...

Read more

Importanta activitatilor transdisciplina…

IMPORTANŢA  ACTIVITĂŢILOR  TRANSDISCIPLINARE   Profesor învăţământ primar Marşeu Rodica Lavinia Şcoala cu clasele I – VIII Dudeştii Noi, Judeţul Timiş     Activităţile transdisciplinare sunt activităţi care abordează o tema generală din perspectiva mai multor arii...

Read more

Particularitatile limbajului la scolarul…

PARTICULARITĂŢILE LIMBAJULUI LA ŞCOLARUL MIC                                                                Mitroi Ramona Delia                                                    Liceul Teoretic Recaş, Timiş   Limbajul este activitatea individuală de comunicare prin intermediul limbii, ori comunicarea presupune vehicularea unor semnificaţii între emiţător şi un...

Read more

Educatia religioasa dimensiune speciala …

EDUCAŢIA RELIGIOASĂ - DIMENSIUNE SPECIALĂ A EDUCAŢIEI GENERALE Prof. Pătrăşcanu Melania Emanuela, Colegiul Naţional Al.I.Cuza, Focşani "Dacă dezvoltăm numai forţele fizice ale unui copil, facem dintr-însul un atlet sau un...

Read more

Sincronie si diacronie

SINCRONIE ŞI DIACRONIE Profesor Andra Elena Diaconu, Școala Gimnazială Fitionești, județul Vrancea Modul de cercetare sincronic nu se opune categoric cercetării istorice, evolutive, diacronice, ci apare ca o completare necesară,...

Read more

PASI IN CERCETAREA PEDAGOGICA

STUDIEREA ,,PAŞILOR” ÎN CONCEPEREA, ELABORAREA, PERFECŢIONAREA ŞI EVALUAREA CERCETÃRII PEDAGOGICE, ŞTIINtIFICO-METODICE   Inst. Pãsat Mic Elena Corina Şcoala cu clasele I-VIII, Galicea Mare, Dolj     Plecând de la ,,teoria”, ,,practica educationalã”, ,,inovatia procesului de învãtãmânt”,...

Read more

Interferente simbolistice si parnasiene …

INTERFERENȚE SIMBOLISTE ȘI  PARNASIENE ÎN CAPITOLUL NOAPTEA DE ARGINT DIN THALASSA LUI ALEXANDRU MACEDONSKI   Drd. Miron Costina Violeta Prof. la Școala cu cls. I-VIII Tălpaș, Dolj   Thalassa1, publicată în Cartea de aur, 1902,...

Read more

Metode alternative de evaluare proiectul…

METODE ALTERNATIVE DE EVALUARE: PROIECTUL ŞI PORTOFOLIUL   Prof. Octavian Horia MINDA Şcoala cu clasele I-VIII Sînandrei Timiş     PROIECTUL Constituie o metodă complexă de evaluare, individuală sau de grup, recomandată profesorilor pentru evaluarea sumativă....

Read more