Choose your screen resolution: Auto adjust 800x600 1024x768


Aplicatii ale trigonometriei in fizica si topografie
Marţi, 08 Octombrie 2013 18:19

APLICAŢII ALE TRIGONOMETRIEI ÎN FIZICĂ ŞI TOPOGRAFIE

 

Prof. Carmen Crafcenco

Liceul Teoretic “ Mircea Eliade”, GALAŢI

 

Trigonometria găseşte numeroase aplicaţii în Statică, la compunerea forţelor, în optică dar şi în topografie. Topografia are scopul de a reprezenta în plan configuraţia unui teren cu toate amănuntele ce se găsesc pe suprafaţa sa (construcţii, drumuri,cursuri de apă etc.). Pentru atingerea acestui scop, se caută poziţia în plan a diferitelor puncte ale terenului; se strâng astfel elementele necesare figurării planului terenului adică proiecţia sa pe un plan orizontal sau pe o suprafaţă de nivel. În numeroase probleme practice trebuie să se cunoască distanţele dintre anumite puncte de pe suprafaţa pământului şi unghiurile dintre direcţiile determinate de câte două din aceste puncte. Măsurarea direct a acestor distanţe şi unghiuri este dificilă şi în unele cazuri, imposibilă. Folosind însă unele cunoştinţe căpătate la rezolvarea triunghiurilor, o astfel de problemă se reduce la măsurarea pe teren a distanţei dintre două puncte şi a unghiurilor dintre anumite direcţii; celelalte distanţe şi unghiuri se determină prin calcul.

 

1.      Compunerea forţelor concurente

Forţa este cauza care produce sau modifică mişcarea unui punct material sau a unui corp. O forţă se reprezintă pintr-un vector care are o mărime, o direcţie şi un sens. Vectorul este bine determinat când îi cunoaştem punctual de aplicaţie şi extremitatea.

Problema fundamentală a Statisticii constă tocmai în a determina rezultanta unui sistem de forţe, atunci aceasta există.

 

În cazul forţelor concurente fie două forţe F1= OA şi F2=OB cu acelaşi punct de aplicaţie, ceea ce putem realiza pentru forţele neparalele din acelaşi plan, pe care le putem deplasa pe suporturile respective până ce punctele de aplicaţie vin în punctul de întâlnire al suporturilor. Se admite, fără demonstraţie că: rezultanta a două forţe concurente este reprezentată, în mărime, în direcţie şi sens, prin diagonala paralelogramului construit pe forţele date ca laturi, rezultat cunoscut sub numele de regula paralelogramului.

Observând atunci că cele două forţe F1 şi F2, împreună cu rezultanta R=AC, formează un triunghi OAC sau OBC, problema compunerii şi descompunerii forţelor revine la rezolvarea unui triunghi.

Folosind teorema sinusurilor în triunghiul AOC vom avea:

OAsin ACO = OCsin AOC= ACsinOAC

sau F1sin⁡(R,F2) =F2sin⁡(R,F2)=Rsin⁡(F1,F2)

care exprimă că forţele şi rezultanta sunt proporţionale cu sinusurile unghiurilor formate de celelalte două.

Observând că OAC=1800-AOB şi teorema cosinusului aplicată triunghiului OAC, devine:

R2=F12+F22+2 F1F2 cos(F1,F2) (10)

care permite calculul rezultantei când cunoaştem forţele şi unghiul lor.

Dacă forţele sunt perpendicular, paralelogramul OACB devine un dreptunghi OAC=900, iar relaţia (10) devine:

R2=F12+F22 adică satisface teorema lui Pitagora.

2. Determinarea poziţiei unei raze după trecerea ei prin placă

Altă aplicaţie a trigonometriei în fizică este următoarea:

O rază luminoasă străbate o placă de sticlă luminată de plane paralele. Voi determina poziţia razei după trecerea ei prin placă.

 

Fie MN şi PQ planele care limitează placa, d grosimea plăcii şi n indicele de refracţie al ei. Raza incident AB se refract de două ori. Întâi întâlnind placa se refract mergând în direcţia BC determinată de legea refracţiei:

sinαsinβ = n

La ieşire din placă raza merge după direcţia CD, care se determină prin condiţia:

sinβsinγ=1n

Din aceste două relaţii rezultă: sinα=sinγ adică ţinând cont că α şi γ sunt ascuţite: α= γ

Deci prin trecerea unei raze luminoase printr-o placă cu feţele paralele, ea nu-şi schimbă direcţia.

3. Determinarea prin calcul a înălţimii unui turn vertical

Voi determina înălţimea unui turn vertical, în ipoteza că porţiunea de teren din vecinătatea bazei turnului este situată în planul orizontal.

Fie AB înălţimea turnului considerat şi O un punct din planul orizontal.

 

Plasând staţia în poziţia vertical O’O se vizează din O punctul B- vârful turnului.

În acest fel se măsoară unghiul COB=α format de dreapta OB cu proiecţia sa pe planul orizontal. Având în vedere că distanţa AO=b se măsoară pe teren, problema se reduce de fapt la determinarea catetei BC a triunghiului dreptunghic BCO în care se cunosc unghiul opus şi cealaltă catetă.

Aşadar CB=b tg α

Dacă h=OO este înălţimea instrumentului de măsurat unghiurile, atunci înălţimea turnului se calculează cu ajutorul formulei: AB=AC+CB=h+b tg α. Determinarea distanţei dintre două puncte situate într-o porţiune de trecere inaccesibilă

4. O altă aplicaţie a trigonometriei în topografie se referă la determinarea distanţei dintre două puncte A şi B situate într-o porţiune de teren inaccesibilă.

Presupunem că există punctele C şi D coplanar cui A şi B din care se văd aceste puncte şi astfel încât distanţa dintre ele să poată fi măsurată.

 

Fie b distanţa dintre punctele C şi D şi α, β, γ, δ măsurile unghiurilor ADB, BDC, DCA, ACB respectiv.

Din triunghiul ACD în care se cunosc latura CD şi unghiurile adiacente, obţinem:

AC = bsin(α+β)sin⁡(α+β+γ) Iar din triunghiul BCD: BC = bsinβsin⁡(β+γ+δ)

În acest fel în triunghiul ABC se cunosc laturile AC, BC şi unghiul cuprins între ele, prin urmare se poate calcula AB

 

Bibliografie:

Ghermănescu M., Aplicaţiile trigonometriei, Ed. Tehnică, Bucureşti, 1963

Stoka M., Manual de Trigonometrie, E.D.P., Bucureşti, 1971


Articole asemanatoare mai vechi:

 

Revista cu ISSN

Cercetarea stiintifica si tipologia pref…

CERCETARE ŞTIINŢIFICĂ TIPOLOGIA PREFIXOIDELOR prof. Chiru Adelina Şcoala Gimnazială ,,Înv. Clemenţa Beşchea” Căpăţîneşti, Mărăcineni, judeţul Buzău Aspectul formal Intrând în compunerea unui cuvânt, prefixoidele...

Read more

Insertia si calitatea vietii la persoane…

INSERŢIA ŞI CALITATEA VIEŢII LA PERSOANELE CU CERINŢE EDUCATIVE SPECIALE   Sîrbu Mihaela Ramona, Profesor itinerant/de sprijin Centrul Şcolar pentru Educaţie Incluzivă Şimleu Silvaniei     Dezvoltarea unei abordări comune a calităţii vieţii aplicabilă la...

Read more

Documente necesare pentru coordonatorul …

Documente necesare pentru coordonatorul de proiecte şi programe educative     ¢     Decizia de numire pe funcţia de coordonator de proiecte şi programe educative ¢     Fişa postului + individualizată, avizată de Consiliul de administraţie al...

Read more

Planificare model pentru educatie tehnol…

Planificare model pentru educatie tehnologica invatamant gimnazial   Incepand cu anul scolar 2011-2012, Ministerul Educatiei, Cercetarii, Tineretului si Sportului a oferit pentru prima data tuturor cadrelor didactice modele de planificari calendaristice. Iata...

Read more

Proiect de parteneriat scoala familie

PROIECT DE PARTENERIAT ŞCOALĂ-FAMILIE Înv. Dana Gligor Școala Gimnazială Câmpeni Am realizat acest parteneriat pentru a consolida relația cu familiile elevilor și a-i...

Read more

Medalii si premii speciale la Olimpiada …

Unsprezece medalii şi două premii speciale la Olimpiada Internaţională Pluridisciplinară Tuymaada 2012   Olimpicii români au repurtat un nou succes la a XVIII-a ediţie a Olimpiadei Internaţionale Pluridisciplinare Tuymaada desfăşurată în perioada 12-20...

Read more

Ministerul Educatiei premiaza olimpicii …

Ministerul Educaţiei premiază olimpicii români   Ministerul Educaţiei premiază olimpicii români medaliaţi la concursurile şcolare internaţionale (miercuri, 14 noiembrie, Palatul Victoria, ora 13.30).

Read more

Cresterea calitatii educatiei si formari…

CREŞTEREA CALITĂŢII EDUCAŢIEI ŞI FORMĂRII PRIN NOILE TEHNOLOGII INFORMAŢIONALE ŞI DE COMUNICARE   Mirela Frunzeanu, profesor pentru învăţământul primar, Mark Twain International School, loc. Voluntari, jud. Ilfov   Rezumat Contextul de dezvoltare a sistemului educaţional...

Read more