Choose your screen resolution: Auto adjust 800x600 1024x768


Categorii
Scris de administrator   
Joi, 08 Iunie 2017 16:08

CATEGORII

Prof. Badea Brigitte,

Colegiul Tehnic Ion Mincu, Timişoara

Rezumat

Structurile algebrice constituie o ramură fascinantă a algebrei, cu aplicaţii extrem de interesante. Elevilor din clasele a XII-a le sunt pezentate câteva structuri algebrice de bază prin care ei pot întrezări frumuseţea acestei părţi a matematicii. Pentru profesorii interesaţi de extinderea în acest domeniu a cunoştinţelor elevilor pe care îi îndrumă voi prezenta în articol noţiunea de categorie, construită cu ajutorul morfismelor studiate în liceu. Această structură algebrică va fi exemplificată prin două categorii tipice, categoria grupurilor abeliene Ab şi categoria R-modulelor Mod( R).

I. Noţiunea de categorie

Se numeşte categorie o noţiune matematică C dată prin:

- o clasă Ob C ale cărei elemente se numesc obiecte;

- pentru fiecare cuplu de obiecte (A,B), o mulţime notată HomC(A,B) numită mulţimea morfismelor de la A la B;

- pentru fiecare tre iobiecte A, B, C o aplicaţie:

mABC: HomC(A,B) HomC(B,C) ®HomC(A,C), aplicaţii care definesc compunerea morfismelor; vom nota: mABC((f,g)) = gf.

Aceste date sunt supuse următoarelor condiţii:

(Cat.1) Dacă (A,B) şi (C,D) sun tdouă perechi distincte de obiecte din C, atunci

HomC(A,B) ∩ HomC(C,D) = Æ.

(Cat.2) Compunerea morfismelor este asociativă, adică:

dacă f HomC(A,B), g HomC(B,C), h HomC(C,D) atunci h(gf) = (hg)f .

(Cat.3) Pentru fiecare obiect A există un morfism 1A HomC(A, A) astfelîncât f HomC(A, ×) şi g HomC(× ,A) să avem: f1A = f şi 1A g = g .

Observaţie: Pentru fiecare obiect A, morfismul1A numit morfism unitate sau morfism identic, este unic.

Fie D o categorie. O categorie Cse numeşte subcategorie a lui D dacă sunt îndeplinite condiţiile:

1) Ob C ÍObD ;

A, B Ob C, HomC(A,B) HomD(A,B) ;

2) Compunerea înCeste indusă de compunerea din D;

3) A Ob C, 1A HomC (A,A).

Prin duala unei categorii vom înţelege categoria C° dată prin:

a) ObC° = ObC ;

b) HomC° (A,B) = HomC(B,A);

c) pentru A, B, C Ob C°, f HomC° (A,B), g HomC° (B,C), m ((f,g)) = mCBA((g,f)).

Principiul dualităţii: Orice noţiune sau enunţ relativ la obiectele şi morfismele unei categoriiCadmite, prin transcriere în categoriaC°, o noţiune sau un enunţ dual.

Observaţie: Practic, dualizarea se obţine prin inversarea săgeţilor ce reprezintă morfismeleluiC.

II. Exemple

1) Categoria grupurilor abeliene Ab

Această categorie este unul din exemplele tipice de categorii, în mod evident condiţiile fiind îndeplinite pentru grupurile abeliene dotate cu morfismele obişnuite şi cu compunerea morfismelor. Exemplul este accesibil inclusive elevilor de liceu în cazul extinderii cunoştinţelor referitoare la structurile algebrice.

2) Categoria R-modulelor Mod(R)

Fie R un inel comutativ arbitrar, cu elemental unitate 1 ≠ 0.

Printr-un modul peste R sauR-modul înţelegem un grup aditiv abelianX împreună cu o aplicaţie

μ: R X → X care satisface următoarele patru axiome:

(M1) μ ( α+β, x) = μ (α, x) + μ ( β, x), α, β R, x X

(M2)μ( α, x+y) = μ(α, x) + μ (α, y), α R , x, y X

(M3)μ [α,μ ( β, x)]= μ (α β, x), α, β R , x X

(M4) μ (1, x) = x , x X .

Aplicaţia μ este numită înmulţirea cu scalar ia modulului X. Această operaţie externă este notată, de regulă, multiplicativ:μ (α, x) = αx.

Cu această notaţie axiomele (M1) – (M4) se scriu:

(M ) (α+β)x = αx + βx , α, β R, x X

(M ) α(x+y) = αx + αy , α R , x, y X

(M ) α(β x) = (α β)x α, β R , x X

(M ) 1x = x, x X .

Fie X şi Y două R-module. O aplicaţie f: X → Y se numeşte morfism de R-module dacă îndeplineşte condiţiile:

(1) f(x+y) = f(x) + f(y), x, y X

(2) f(αx) = αf(x) , α R, x X.

Cu alte cuvinte f este morfism de R-module dacăşi numai dacă este morfism de grupuri şi păstrează înmulţirea cu scalari.

R-modulele dotate cu morfismele de R-module şi cu compunerea uzuală a morfismelor constituie de asemenea un exemplu tipic de categorie.

Bibliografie:

[1] Dragomir A., Dragomir P. – “Structuri algebrice”, Edit. Facla,Timişoara, 1981;

[2] Mitchell B. – Theory of Categories”, Academic Press, New York, 1965;

[3] SzeTsen Hu Introduction to Homological Algebra”, Holdan-Day Inc., 1968.

 

Revista cu ISSN

Copilaria iubire in opera lui Mihai Emin…

COPILĂRIA – IUBIRE ÎN OPERA LUI MIHAI EMINESCU   Ileana Faur, profesor Limba şi Literatura română Liceul Tehnologic Transporturi Auto, Timişoara            Prezentul articol aduce în discuţie valenţele iubirii adolescentine, pure, în poeziile de...

Read more

Educatia incluziva

 EDUCAŢIA INCLUZIVĂ   Institutor Herczeg Monica, Şcoala cu clasele I-VIII Dudeştii Noi        Motto: "Toţi trăim sub acelaşi cer dar nu toţi avem acelaşi orizont."                                                                                              Konrad Adenauer        Excluderea copiilor, tinerilor şi adulţilor de...

Read more

Saptamana educatiei globale 2012 Mobilit…

Saptamana educatiei globale 2012 Mobilitate pentru sustenabilitate   A 14-a editie a Saptamanii Educatiei Globale, program facilitat de Centrul Nord-Sud al Consiliului Europei, se va desfasura in perioada 10-18 noiembrie 2012. Tema de acest an pentru Saptamana Educatiei Globale este “Mobilitate pentru...

Read more

SCOALA - UN SPATIU AL VIOLENTEI?

ŞCOALA – UN SPAŢIU AL VIOLENtEI?   Prof. Melania top ªcoala Generalã Nr. 31, Brasov   Motto: Violenta este ultimul refugiu al omului incompetent. (Isaac Asimov) On parle toujours...

Read more

Spune NU drogurilor - tipuri de droguri …

Spune NU drogurilor - tipuri de droguri - hasis, marihuana

1.     Haşişul şi marihuana   Droguri din această categorie de substanţe:  Cannabis-ul este denumirea generică pentru produsele vegetale obţinute din cânepa de cultură (cannabis sativa) plantă ce conţine substanţe halucinogene (compusul psihoactiv...

Read more

educatia ecologica la ciclul primar

EDUCAŢIA ECOLOGICĂ LA CICLUL PRIMAR   Prof. Marşeu Rodica Lavinia Şcoala cu clasele I – VIII Dudeştii Noi, jud. Timiş „Nu putem schimba pe alţii, dar dacă ne putem...

Read more

CAUZELE ALBIRII RECIFURILOR DE CORALI_ST…

STUDIU DE CAZ DESPRE CAUZELE ALBIRII RECIFURILOR DE CORALI Prof. Dimitriu Alina Grup Școlar Agricol Alexandria, jud. Teleorman Recifurile de corali sunt printre cele mai diverse...

Read more

Violenta in scoala agresiunea

VIOLENŢA ÎN ŞCOALĂ. Agresiunea.   Profesor: Teodorescu Lăcrămioara Şcoala cu clasele I-VIII Faraoanele           ,, Atâta timp cât oamenii vor folosii violenţa pentru a combate violenţa, aceasta va exista întotdeauna printre noi ,, Michael...

Read more