Choose your screen resolution: Auto adjust 800x600 1024x768


Pitagora printre numere prime si divizibilitate
Sâmbătă, 08 Decembrie 2012 00:00

PITAGORA PRINTRE NUMERE PRIME ŞI DIVIZIBILITATE

 

Prof. Popp Loredana

Liceul Pedagogic „Carmen Sylva” Timişoara

 

Am să încep povestea mea cu un citat al lui Emerson, în eseul "Despre prietenie" unde acesta spune că: " . . . singura cale ca să ai un prieten este ca tu însuţi să fii unul".

Este foarte greu să-ţi găseşti un prieten dar este şi mai greu de crezut că nu numai oamenii îşi pot găsi prieteni, ci şi numerele. De aceea am să va spun o poveste despre numerele prietene:

Ca să-i asigure protecţia unui senior ce-l duşmănea, un cavaler a trimis acestuia un dar foarte curios fiindcă l-a potrivit in aşa fel ca să cuprindă exact 220 de bucăţi. Anume : saci de grâu, de poame uscate, vase de vin, de ulei, oi, porci şi la acestea a adăugat o pungă de bani, atâţia la număr cât mai era nevoie ca împreună cu numărul celorlalte bunuri să ajungă la 220.

Separat într-o pungă de piele, cavalerul i-a trimis seniorului un medalion pe care era încrustat numărul 284.

Seniorul neştiind ce semnificaţie să dea neobişnuitului cadou, s-a dus să se lămurească la cel mai mare matematician de atunci Pitagora.

Pitagora şi-a dat seama imediat că această problemă poate fi rezolvată cu ajutorul numerelor prime şi a încercat să-i explice seniorului de unde ar trebui să înceapă cu rezolvarea problemei. El a început să explice astfel :

Numim Număr prim orice număr natural mai mare decât 1, care are numai divizori improprii. Numerele prime sunt : 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31 … Observaţie singurul număr prim şi par este 2.

Pentru a afla dacă un număr este prim sau nu, îl descompunem în factori primi, adică îl împărţim la toate numerele prime cu care este divizibil. Dacă este divizibil doar cu 1 şi cu el însuşi, atunci numărul este prim.

După aceste mici explicaţii, Pitagora îl rugă pe senior să împartă cele două numere în factori primi.

Atunci seniorul notă pe hârtie:

            220= 2×2×5×11

            284=2×2×71

Dar există o deosebire între factorii primi ai unui număr şi divizorii lui. Divizorii unui număr nu sunt numai factori primi ci şi produsele formate de aceştia.

Dacă reluăm calculul adăugând şi pe 1 (unu) printre factorii primi se poate constata că prin adunarea părţilor lui 220 se obţine 284.

2×2=4

2×5=10

2×11=22

5×11=55

2×2×5=20

2×2×11=44

2×5×11=110

Deci: 1+2+4+5+10+20+11+22+44+55+110 =284

Dacă îl luăm pe 284 descompus în factori primi obţinem 2×2×71.

2×2=4

2×71=142

Deci 1+2+4+71+142 =220

Seniorul plecă mulţumit de explicaţia dată de marele Pitagora şi astfel reuşi să înţeleagă mesajul cavalerului.

 

Răspândindu-se vorba prin ţinut despre înţelepciunea lui Pitagora , într-o dimineaţă acesta se trezi cu un nou musafir care încerca să îl pună în încurcătură pe marele învăţat. Astfel Pitagora trebui să rezolve o nouă problemă care se prezenta astfel:

·                     Un copil este de două ori mai vârstnic decât sora lui. Ea are de trei ori mai multe cireşe decât are el alune. Dacă înmulţim numărul ce reprezintă vârsta copilului cu numărul cireşelor obţinem 510. Ce vârstă are sora copilului şi câte alune are el?

Pitagora se gândi un pic şi îşi dădu seama că are de a face din nou cu numerele prime. Astfel dacă descompunem în factori primi numărul 510, obţinem: 2×3×5×17. Vârsta fratelui trebuie să fie compusă din doi dintre aceşti factori. Cum este dublul vârstei sorei, unul din numere neapărat este 2.

Numărul cireşelor trebuie să fie un multiplu de 3. Rămân doi factori primi: 5 şi 17. Dar vârsta fratelui nu poate fi 2×17=34, pentru că este încă un copil. Atunci putem spune că are 2×5=10 ani, iar surioara lui are 10-5 adică 5 ani.

Numărul cireşelor va fi de 3×17=51, iar cel al alunelor este 17.

 


Articole asemanatoare relatate:

 

Revista cu ISSN

Cum prevenim bullying-ul in mediul scola…

CUM PREVENIM BULLYING-UL ÎN MEDIUL ȘCOLAR Prof. înv. primar Almaș Andreea-Ioana Liceul de Artă „Ioan Sima” Zalău Ca verb „to bully” înseamnă: a intimida, a speria, a domina. Bully...

Read more

Relatiile interpersonale din clasa de el…

RELATIILE INTERPERSONALE DIN CLASA DE ELEVI - STUDIU   Interactiunea educationala este un aspect, o forma din multitudinea si varietatea relatiilor interpersonale in clasa de elevi in ceea ce priveste o posibila...

Read more

Caracterul

CARACTERUL   Ca latura relationala a personalitatii, „responsabila" de felul in care oamenii interactioneaza unii cu altii in cadrul societatii, caracterul a fost definit cel mai adeseori ca o pecete sau amprenta...

Read more

Fisa inscriere probe de aptitudini 2014

Fisa inscriere probe de aptitudini 2014   Descarca anexa la fisa de inscriere admitere in clasa a IX-a, an scolar 2014-2015, pentru participarea la probele de aptitudini sau la probele de verificare...

Read more

Martisorul, traditie si legenda

MÃRŢIŞORUL, TRADIŢIE ŞI LEGENDÃ Prof. Laura Mihaela Herman Şcoala cu clasele I-VIII „ Nicolae Iorga” Baia Mare     Mãrtisorul, un obicei pãgân de pe vremea dacilor si romanilor Descoperirile arheologice aratã...

Read more

Educatia prin diversitate

EDUCATIA PENTRU DIVERSITATE     Sintagma scoala pentru diversitate este echivalenta sintagmei scoala pentru toti si reprezinta dezideratul maximei tolerante in ceea ce priveste diferentele fizice, socioculturale, lingvistice si psihologice existente intre copii/elevi,...

Read more

Bunatatea te face mai puternic

BUNĂTATEA TE FACE MAI PUTERNIC Profesor, Camelia Butnărașu, Liceul Teoretic Emil Racoviţa, Galați O persoană bună! ? „Bună ziua! Vă scriu în speranţa că sunt gospodari care pot...

Read more

Fizica si calculatorul

FIZICA ŞI CALCULATORUL    Profesor Szekely Daniela Liceul Tehnologic Lupeni     Educaţia asistată de calculator, ca modalitate de instruire, este unul din domeniile în care tehnologia informaţiei are o contribuţie majoră la creşterea eficienţei procesului...

Read more